Toxicant and Carcinogen Metabolite Biomarkers: Applications in Studies of Tobacco Use and Wok Cooking

Stephen S. Hecht, Ph.D.
Masonic Cancer Center
University of Minnesota
Overall Goal

Elucidate mechanisms of tobacco-induced cancer and apply this knowledge to cancer prevention.
Approaches

- Identify carcinogens and toxicants in tobacco products and the human environment.
- Determine pathways of carcinogen and toxicant metabolism and DNA damage.
- Using mass spectrometry, develop biomarkers to quantify carcinogen and toxicant uptake in humans.
 - Metabolites in urine or blood
 - DNA or protein addition products
- Use these biomarkers to identify groups and individuals susceptible to cancer.
Environmental Carcinogen and Toxicant Urinary Biomarkers

Carcinogen or Toxicant
In environment and tobacco smoke
- Polycyclic aromatic hydrocarbons (PAH)
- Volatiles such as acrolein, crotonaldehyde, ethylene oxide, propylene oxide, butadiene, benzene

Tobacco-specific
- Tobacco-specific nitrosamines
- Nicotine

Urinary Metabolite Biomarker
Found in all human urine samples
- 1-hydroxypyrene (1-HOP) or phenanthrene tetraol (PheT)
- Mercapturic acids: 2- and 3-HPMA, HMPMA, HEMA, MHBMA, SPMA

Found only in tobacco users or people exposed to tobacco smoke
- NNAL, NNN
- Cotinine (also from NRT)
Environmental Carcinogen and Toxicant Urinary Biomarkers

Carcinogen or Toxicant

- **In environment and tobacco smoke**
 - Polycyclic aromatic hydrocarbons (PAH)
 - Volatiles such as acrolein, crotonaldehyde, ethylene oxide, propylene oxide, butadiene, benzene

- **Tobacco-specific**
 - Tobacco-specific nitrosamines
 - Nicotine

Main Effects

- **Carcinogens:** respiratory tract and other tissues
- **Acrolein and crotonaldehyde** - highly toxic irritants; ethylene oxide, propylene oxide, butadiene, benzene - established carcinogens

- **NNK, NNN** – powerful carcinogens to lung, oral cavity, pancreas, esophagus
- **Nicotine** - addictive
A Panel of Urinary Tobacco Carcinogen and Toxicant Biomarkers

<table>
<thead>
<tr>
<th>Urinary biomarkers</th>
<th>Source</th>
<th>Smokers</th>
<th>Non-smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total NNAL</td>
<td>NNK</td>
<td>1.1 - 2.9</td>
<td>Not Detected</td>
</tr>
<tr>
<td>Total NNN</td>
<td>NNN</td>
<td>0.049 - 0.24</td>
<td>Not Detected</td>
</tr>
<tr>
<td>Phenanthrene tetraol or 1-HOP</td>
<td>PAH</td>
<td>0.50 - 1.45</td>
<td>0.18 - 0.50</td>
</tr>
<tr>
<td>MHBMA</td>
<td>1,3-Butadiene</td>
<td>15.5 - 322</td>
<td>0.65 - 7.5</td>
</tr>
<tr>
<td>SPMA</td>
<td>Benzene</td>
<td>3.2 - 32.1</td>
<td>0.17 - 3.14</td>
</tr>
<tr>
<td>3-HPMA</td>
<td>Acrolein</td>
<td>5,869 - 11,190</td>
<td>1,131 - 1,847</td>
</tr>
<tr>
<td>HMPMA</td>
<td>Crotonaldehyde</td>
<td>9,825 - 26,000</td>
<td>242 - 3,200</td>
</tr>
<tr>
<td>HEMA</td>
<td>Ethylene oxide</td>
<td>19.1 - 102</td>
<td>6.51 - 38.8</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
<td>2.3 - 12.8</td>
<td>1.34 - 8.04</td>
</tr>
<tr>
<td>8-epi-PGF$_{2\alpha}$</td>
<td>Oxidative damage</td>
<td>1.48 - 2.80</td>
<td>0.62 - 1.13</td>
</tr>
<tr>
<td>Nicotine equivalents</td>
<td>Nicotine</td>
<td>70.4-154 µmol/24 h</td>
<td>Not Detected</td>
</tr>
</tbody>
</table>

Persistence of Biomarkers Study

- 17 smokers provided baseline 24h urine samples.
- Eight days later, they quit smoking and received nicotine replacement therapy.
- They provided 24h urine samples on days 3, 7, 14, 21, 28, 42, and 56 after quitting.
- Urine samples were analyzed by LC-MS/MS for panel biomarkers.

S.G. Carmella, M. Chen, S. Han, A. Briggs, J. Jensen, D. K. Hatsukami, and S. S. Hecht
Mean Urinary 3-HPMA (Acrolein) Reduction on Smoking Cessation, N=17
Mean Urinary HMPMA (Crotonaldehyde) Reduction on Smoking Cessation

N=17
Mean Urinary SPMA (Benzene) Reduction on Smoking Cessation, N=17

% REDUCTION FROM BASELINE SMOKING

DAYS POST CELSSATION
Mean Urinary HEMA (Ethylene Oxide) Reduction on Smoking Cessation

N=17
Mean Urinary MHBMA (Butadiene) Reduction on Smoking Cessation, N=17
Mean Urinary Total NNAL (NNK) Reduction on Smoking Cessation, N=17
Mean Urinary 1-HOP (PAH) Reduction on Smoking Cessation, N=15
Conclusions of the Persistence of Biomarkers Study

- All biomarkers decreased significantly upon smoking cessation (P<0.001)
 - Most rapid for mercapturic acids; 80% decrease
 - Gradual for NNAL
 - 1-HOP, 50% decrease and more variable

- Consistent with levels of the parent compounds in tobacco smoke and differences in biomarker levels between smokers and non-smokers

- Demonstrates that these urinary metabolites are biomarkers of exposure
Biomarkers of Cancer Risk?

Addressed with respect to the following biomarkers:

– Total NNAL (NNK) and total NNN (NNN)
– PheT (PAH)
– Total cotinine (nicotine)

– MHBMA (butadiene)
– HEMA (ethylene oxide)
– SPMA (benzene)
– 3-HPMA (acrolein)
– HMPMA (crotonaldehyde)
Shanghai Cohort Study

• Enrolled 18,244 men aged 45-64 in 1986-89
• In-person interview for smoking and other lifestyle factors
• Baseline blood and urine samples collected
• Incident lung cancer cases identified through follow-up interviews and record linkage
• 475 lung cancer cases and 475 matched controls, all smokers, in this study
• Evaluated total NNAL, PheT, total cotinine, and mercapturic acids with respect to lung cancer
Biomarker – Lung Cancer Relationships, Shanghai Cohort Study

Adjusted for Smoking Duration and Intensity and the Other Biomarkers

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Adjusted OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total NNAL</td>
<td>1.93</td>
<td>1.28-2.90</td>
<td>0.001</td>
</tr>
<tr>
<td>PheT</td>
<td>2.34</td>
<td>1.33-4.11</td>
<td>0.023</td>
</tr>
<tr>
<td>Total Cotinine (S. Murphy lab)</td>
<td>3.52</td>
<td>2.30-5.41</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Urinary Mercapturic Acids and Lung Cancer Risk in the Shanghai Study (N = 735)
Adjusted for Smoking Duration and Intensity AND Total Cotinine

• After adjustment for cotinine, none of the mercapturic acids was significantly related to lung cancer.

• Interpretation: Total cotinine is an effective surrogate for the volatiles because they are weakly or non-carcinogenic to the lung.

• In contrast, NNK and PAH, represented by total NNAL and PheT, are powerful pulmonary carcinogens.

Urinary Total NNN and Esophageal Cancer Risk in the Shanghai Study (N = 77 cases and 223 matched controls)
Adjusted for Smoking Duration and Intensity, Total Cotinine, and Total NNAL

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Adjusted OR</th>
<th>95% C.I.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total NNN</td>
<td>17.0</td>
<td>3.99 – 72.8</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Total NNAL and total cotinine were not significantly associated with esophageal cancer risk

Summary of the Tobacco Smoke Studies

• A panel of quantitative biomarkers is available to assess exposure to toxicants and carcinogens in tobacco products.
• All toxicant and carcinogen levels are significantly elevated in cigarette smokers.
• Tobacco-specific biomarkers can identify exposures of non-smokers to cigarette smoke or other tobacco products.
• Certain biomarkers in this panel – cotinine, NNAL, NNN, and PheT - are related to risk of lung or esophageal cancer, based on prospective epidemiologic studies.
Background

- Lung cancer, particularly adenocarcinoma, is common among non-smoking women in Singapore and some other parts of Asia.
- Not due to smoking or secondhand smoke exposure
- Different from the use of solid fuels in poorly ventilated areas, as in some parts of China
- Multiple epidemiologic studies find an association between high temperature wok cooking and lung cancer.
- IARC conclusion: emissions from high temperature frying are “probably carcinogenic to humans” (Group 2A).

Biomarker Studies in Chinese Women Who Regularly Cook at Home Using a Wok

Preliminary Study

• Compared urinary biomarker levels in 54 non-smoking women of Chinese ethnicity from Singapore who did not smoke or drink, with 50 women randomly chosen from the non-drinking, non-smoking participants in the Singapore Chinese Health Study.

• Found elevated levels of mercapturic acids of acrolein, crotonaldehyde, and benzene. No elevation of mercapturic acid of butadiene or PAH biomarkers 1-HOP and PheT

• Increases in mercapturic acid levels not nearly as great as in smokers

Cancer Epidemiol, Biomarkers, and Prev. **19**: 1185-1192 (2010)
Biomarker Studies in Chinese Women Who Regularly Cook at Home Using a Wok

Enrolled 328 non-smoking, non-drinking women from Singapore, ages 45-74, who did various levels of wok cooking:
 - less than once per week
 - 2 – 6 times per week
 - 7 or more times per week

Subjects filled out a questionnaire and provided a spot urine sample.

Urine was analyzed for 3-HPMA, HMPMA, and SPMA from acrolein, crotonaldehyde, and benzene.
Significant Relationships between Frequency of Wok Cooking and Acrolein and Crotonaldehyde Biomarkers

<table>
<thead>
<tr>
<th>Cooking related variables</th>
<th>N (%)</th>
<th>Geometric means (95%CI) of mercapturic acids (pmol/mg creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SPMA 3-HPMA HMPMA</td>
</tr>
<tr>
<td>Cooking frequency, times/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>90 (27.4)</td>
<td>0.52 (0.40-0.66)</td>
</tr>
<tr>
<td>2-6</td>
<td>143 (43.6)</td>
<td>0.46 (0.40-0.54)</td>
</tr>
<tr>
<td>7+</td>
<td>95 (29.0)</td>
<td>0.52 (0.44-0.64)</td>
</tr>
<tr>
<td>P for trend</td>
<td>0.652</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Summary of Wok Studies

- Consistent elevation of biomarkers of acrolein and crotonaldehyde exposure in non-smoking women who do regular wok cooking.
- Consistent with emissions of these toxicants from heated cooking oil.
- Although neither is a strong carcinogen, both are powerful and intense respiratory irritants for which there is evidence for involvement in lung cancer etiology:
 - Acrolein causes DNA damage in the p53 gene similar to that seen in lung cancer in smokers.
 - Acrolein and crotonaldehyde cause irritation, inflammation, cell proliferation, squamous metaplasia, interference with pulmonary function, immunosuppression, and other effects upon inhalation.
Overall Summary

• A panel of carcinogen and toxicant biomarkers is now available:
 – Quantified by high throughput mass spectrometric methods with high accuracy and precision
 – Can be applied in large studies (MEC, $N = 2200$)
 – Can specifically distinguish tobacco product exposures from those due to other factors
 – Can identify toxicant and carcinogen exposures from cooking
• Application of biomarkers in field studies can provide reliable and objective exposure data.
Acknowledgements

Hecht Laboratory Analytical Chemistry Group:

Steven Carmella, Makenzie Pillsbury, Menglan Chen, Benjamin Ransom, Viviana Paiano, Delshanee Kotandeniya, Brad Hochalter, Adam Zarth, Jing Yang, Pramod Upadhyaya, Jian-Min Yuan and Mimi Yu Epidemiology Groups, University of Pittsburgh and University of Minnesota

Dorothy Hatsukami Tobacco Studies Group, University of Minnesota

Mass spectrometry in the Analytical Biochemistry Shared Resource, Masonic Cancer Center, University of Minnesota, supported in part by Cancer Center Support Grant CA-77598

Grant support from the U.S. National Cancer Institute: R01 CA-81301, CA-92025; P01 CA-138338

Bob Carlson, editorial support
Metabolism of 1,3-Butadiene to Mercapturic Acids

a. GSH, GSTs; b. γ-glutamyltranspeptidase; c. cysteinyglycine dipeptidase; d. cysteine S-conjugate N-acetyltransferase
Metabolism of 1,3-Butadiene to Mercapturic Acids

1,3-butadiene → P450s → [O] → a-d → HO-S-\(\text{NHAc}\)COOH + AcNH-S-S-OH

\(\text{MFHMA}\)

1,3-butadiene → HO-S-\(\text{NHAc}\)

ADH → HO-CO

a-d → HO-S-\(\text{NHAc}\)

CR → \(\text{DHBMA}\)

a. GSH, GSTs; b. \(\gamma\)-glutamyltranspeptidase; c. cysteinylglycine dipeptidase; d. cysteine S-conjugate N-acetyltransferase
Mean Urinary DHBMA Reduction Upon Smoking Cessation, N=17
Structures of Urinary Biomarkers

Structures of Urinary Biomarkers

\[
\text{MHBMA (from 1,3-butadiene)}
\]

\[
\text{DHBMA (from 1,3-butadiene)}
\]

\[
\text{HPMA (from acrolein)}
\]

\[
\text{HBMA (from crotonaldehyde)}
\]

\[
\text{HEMA (from ethylene oxide)}
\]

\[
\text{SPMA (from benzene)}
\]

Metabolism of Acrolein, Crotonaldehyde, Benzene, and Ethylene Oxide to Mercapturic Acids

- Acrolein: \(\text{acrolein} \) \(\rightarrow \) \(\text{AcNH} - \text{S} \rightarrow \text{AcNH} \)
- Crotonaldehyde: \(\text{H}_3\text{C} - \text{acrolein} \) \(\rightarrow \) \(\text{AcNH} - \text{S} \rightarrow \text{AcNH} \)
- Benzene: \(\text{P450s} \) \(\rightarrow \) \(\text{AcNH} - \text{S} \rightarrow \text{AcNH} \)
- Ethylene oxide: \(\text{ethylene oxide} \) \(\rightarrow \) \(\text{AcNH} - \text{S} \rightarrow \text{AcNH} \)

- HPMA
- HBMA
- SPMA
- HEMA

a. GSH, GSTs; b. \(\gamma \)-glutamyltranspeptidase; c. cysteinylglycine dipeptidase; d. cysteine S-conjugate N-acetyltransferase